572 research outputs found

    Diagnosis and monitoring of Alzheimer's patients using classical and deep learning techniques

    Get PDF
    Machine based analysis and prediction systems are widely used for diagnosis of Alzheimer's Disease (AD). However, lower accuracy of existing techniques and lack of post diagnosis monitoring systems limit the scope of such studies. In this paper, a novel machine learning based diagnosis and monitoring of AD-like diseases is proposed. The AD-like diseases diagnosis process is accomplished by analysing the magnetic resonance imaging (MRI) scans using deep learning and is followed by an activity monitoring framework to monitor the subjects’ activities of daily living using body worn inertial sensors. The activity monitoring provides an assistive framework in daily life activities and evaluates vulnerability of the patients based on the activity level. The AD diagnosis results show up to 82% improvement in comparison to well-known existing techniques. Moreover, above 95% accuracy is achieved to classify the activities of daily living which is quite encouraging in terms of monitoring the activity profile of the subject

    Dynamic priority based reliable real-time communications for infrastructure-less networks

    Get PDF
    This paper proposes a dynamic priority system at medium access control (MAC) layer to schedule time sensitive and critical communications in infrastructure-less wireless networks. Two schemes, priority enabled MAC (PE-MAC) and optimized PE-MAC are proposed to ensure real-time and reliable data delivery in emergency and feedback systems. These schemes use a dynamic priority mechanism to offer improved network reliability and timely communication for critical nodes. Both schemes offer a notable improvement in comparison to the IEEE 802.15.4e low-latency deterministic networks. To ensure more predictable communication reliability, two reliability centric schemes, quality-ensured scheme (QES) and priority integrated QES, are also proposed. These schemes maintain a pre-specified successful packet delivery rate, hence improving the overall network reliability and guaranteed channel access

    Modular Probabilistic Models via Algebraic Effects

    Get PDF
    Probabilistic programming languages (PPLs) allow programmers to construct statistical models and then simulate data or perform inference over them. Many PPLs restrict models to a particular instance of simulation or inference, limiting their reusability. In other PPLs, models are not readily composable. Using Haskell as the host language, we present an embedded domain specific language based on algebraic effects, where probabilistic models are modular, first-class, and reusable for both simulation and inference. We also demonstrate how simulation and inference can be expressed naturally as composable program transformations using algebraic effect handlers

    FedDCT: Federated Learning of Large Convolutional Neural Networks on Resource Constrained Devices using Divide and Co-Training

    Full text link
    We introduce FedDCT, a novel distributed learning paradigm that enables the usage of large, high-performance CNNs on resource-limited edge devices. As opposed to traditional FL approaches, which require each client to train the full-size neural network independently during each training round, the proposed FedDCT allows a cluster of several clients to collaboratively train a large deep learning model by dividing it into an ensemble of several small sub-models and train them on multiple devices in parallel while maintaining privacy. In this co-training process, clients from the same cluster can also learn from each other, further improving their ensemble performance. In the aggregation stage, the server takes a weighted average of all the ensemble models trained by all the clusters. FedDCT reduces the memory requirements and allows low-end devices to participate in FL. We empirically conduct extensive experiments on standardized datasets, including CIFAR-10, CIFAR-100, and two real-world medical datasets HAM10000 and VAIPE. Experimental results show that FedDCT outperforms a set of current SOTA FL methods with interesting convergence behaviors. Furthermore, compared to other existing approaches, FedDCT achieves higher accuracy and substantially reduces the number of communication rounds (with 4−84-8 times fewer memory requirements) to achieve the desired accuracy on the testing dataset without incurring any extra training cost on the server side.Comment: Under review by the IEEE Transactions on Network and Service Managemen

    Isogeometric analysis of linear isotropic and kinematic hardening elastoplasticity

    Get PDF
    Material nonlinearity is of great importance in many engineering problems. In this paper, we exploit NURBS-based isogeometric approach in solving materially nonlinear problems, i.e. elastoplastic problems. The von Mises model with linear isotropic hardening and kinematic hardening is presented, and furthermore the method can also be applied to other elastoplastic models without any loss of generality. The NURBS basis functions allow us to describe exactly the curved geometry of underlying problems and control efficiently the accuracy of approximation solution. Once the discretized system of non-linear equilibrium equation is obtained, the Newton-Raphson iterative scheme is used. Several numerical examples are tested. The accuracy and reliability of the proposed method are verified by comparing with results from ANSYS Workbench software

    Diagnosis and monitoring of Alzheimer's patients using classical and deep learning techniques

    Get PDF
    Machine based analysis and prediction systems are widely used for diagnosis of Alzheimer's Disease (AD). However, lower accuracy of existing techniques and lack of post diagnosis monitoring systems limit the scope of such studies. In this paper, a novel machine learning based diagnosis and monitoring of AD-like diseases is proposed. The AD-like diseases diagnosis process is accomplished by analysing the magnetic resonance imaging (MRI) scans using deep learning and is followed by an activity monitoring framework to monitor the subjects’ activities of daily living using body worn inertial sensors. The activity monitoring provides an assistive framework in daily life activities and evaluates vulnerability of the patients based on the activity level. The AD diagnosis results show up to 82% improvement in comparison to well-known existing techniques. Moreover, above 95% accuracy is achieved to classify the activities of daily living which is quite encouraging in terms of monitoring the activity profile of the subject
    • …
    corecore